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1 Introduction

Symmetric product orbifolds are ubiquitous in theoretical physics. They arise in the

“second-quantization” of a configuration space – the procedure of forming products of

identical copies of the space, and imposing equivalence under permutation of the copies.

Symmetric product orbifolds of two-dimensional conformal field theories (CFTs) [1] appear

in many related contexts: as instanton moduli spaces [2], in the counting problem of black

hole microstates [3], in matrix string theory [4–8], in the AdS3/CFT2 correspondence [9–21].

See also [22–25] for more examples. The calculation of correlation functions in symmetric

orbifold CFTs has been discussed before; a partial list of references includes [26–30].

Our main motivation to reconsider the subject comes from the holographic correspon-

dence [9]. The field theory dual to IIB on AdS3 × S3 × M4 (with M4 hyperkähler) is

the symmetric orbifold of N copies of the 2d sigma model with M4 target. This is to be

contrasted with the AdS5/CFT4 instance of the duality, where the conformal field theory

is an ordinary gauge theory. An intuitive picture of how the gauge/string duality arises

for ordinary gauge theories is due to ’t Hooft [31], and is based on a simple topological

analysis of Feynman diagrams: the large N expansion of a gauge theory can be viewed as

the perturbative expansion of a dual closed string theory, with coupling gs ∼ 1/N . In this

work we will gain a similar understanding for symmetric orbifolds. The basic intuition was
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provided by Lunin and Mathur [29, 30], who observed that correlation functions of twist

operators admit a genus expansion, since they can be evaluated on the covering surface(s)

where the fields are single-valued: the genus of the covering surfaces controls the large N

counting, albeit in a more complicated way than for U(N) gauge theories. In this paper we

make their observations systematic, by defining a diagrammatic expansion for symmetric

product orbifolds akin to the usual Feynman diagram expansion of gauge theories.

The simplest symmetric product orbifolds are obtained by taking N copies of a free

conformal theory and gauging the SN symmetry. Let us contrast such simple orbifolds

with the free field limit of conventional gauge theories. The projection onto SN invariant

states is analogous to the projection onto gauge-invariant states (Gauss law constraint) that

one must perform even in a free gauge theory. However the orbifold theory also contains

twisted sectors, and calculations involving twist operators appear at first qualitatively

different from calculations in a free gauge theory. In a free gauge theory any correlator of

gauge invariant composite operators is evaluated as a sum of a finite number of Feynman

diagrams, with each diagram given (in position space) by a simple product of propagators.

A correlator of twist operators is considerably more involved. It can be evaluated by going

to the covering surface, where it reduces to a vacuum partition function, but determining

explicitly the covering map is a non-trivial task. Nevertheless, as we show in this paper,

it is still possible to regard a correlator of twist operators as a finite sum of appropriate

diagrams. The diagrammatic language that we introduce makes the structure of correlators

more intuitive and the analogy with free gauge theories more transparent.

The genus expansion of correlators in SymNM4 parallels the genus expansion of the

dual IIB string theory on AdS3×S3×M4. It is tempting to identify the auxiliary covering

surfaces that enter the calculation of orbifold correlators with the worldsheets of the dual

closed string theory. On the orbifold side, a correlator receives contributions from a finite

number of covering Riemann surfaces, with fixed complex structure (function of the space-

time positions of the twist operators). On the string theory side, we are instead instructed

to integrate over complex structures. Recall that the orbifold point is dual to a strongly

coupled, possibly topological point1 of the string theory moduli space. We speculate that

at this special point the integration over worldsheet moduli localizes to the discrete set of

surfaces seen on the orbifold side, perhaps by a mechanism similar to the ones at work in

topological [33, 34] and in minimal [35] string theories.

There is an extensive mathematical literature on associating graphs to the enumeration

of branched covering maps between Riemann surfaces (the so-called Hurwitz problem), see

e.g. [36–39]. We found it more useful to develop from first principles a diagrammatic

language designed for concrete applications to CFT, and did not attempt to connect in

detail our graphic construction with those of [36–39], though undoubtedly connections exist.

A brief outline of the paper is as follows. In section 2 we show that a correlator of

twist operators can be expanded as a sum over different terms, which can be grouped

into equivalence classes, and we develop a method to associate a diagram to each class

in the expansion. For each correlator the number of diagrams is finite. This number is a

1See [32] for a concrete suggestion in the AdS5/CFT4 case.
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(generalized) Hurwitz number:2 each diagram corresponds to a branched covering map from

a Riemann surface where the fields are single-valued to the the 2d space-time of the CFT

(assumed to be a sphere) where the twist operators are inserted. We show how to compute

the N dependence of a generic correlator. The actual computation of the correlators needs

an explicit knowledge of the covering maps. In section 3 we present a method to obtain the

genus zero covering map for general four-point functions. We illustrate in some examples

how the map encodes the ideas of section 2. We conclude with a speculation: the covering

surfaces that appear in the calculation of symmetric product orbifold correlators should

be identified with the worldsheets of the dual string theory formulation. Two appendices

contain technical results and connections to previous work [29] on four-point functions.

Some explicit calculations of extremal correlators in the (4, 4) superconformal symmet-

ric product orbifold of T 4, which is dual to type IIB string theory on AdS3 × S3 × T 4 [9],

reveal a very direct connection with the Hurwitz problem. They are reported in a com-

panion paper [44].

2 Diagrams

We begin by recalling basic facts and notations about symmetric orbifold conformal field

theories. For definiteness, consider a sigma model of the form

S =
1

2π

∫

dσdτ Gij(X)
(

∂σXi∂σXj − ∂τX
i∂τX

j
)

+ . . . , (2.1)

where Xi, i ∈ {1, . . . ,D}, are the coordinates of the target space manifold M, with metric

Gij(X), and the dots indicate possible fermionic terms. We assume that the sigma model

is conformal invariant at the quantum level. Important special cases are M = T 4, K3,

and R
8, when the theory (with the appropriate fermionic completion) is in fact (4, 4)

superconformal. The symmetric orbifold CFT is defined by taking N copies of the target

space M, identified up to permutations,

SymN (M) ≡ ⊗NM/SN . (2.2)

Concretely, we endow the coordinates with an extra “color” index I ∈ {1, . . . , N} to label

the different copies, and make the orbifold identification

Xi
I
∼= Xi

h(I) ∀h ∈ SN . (2.3)

The internal structure of the manifold M will play little role in the following, and we will

often omit the index i. Indeed our general considerations would apply to the symmetric

product orbifold of an abstract CFT with no geometric interpretation.

The orbifold theory has twisted sectors with boundary conditions

Xi
I(σ + 2π) = Xi

g(I) . (2.4)

2Hurwitz numbers have appeared before in another duality between a 2d theory (2d pure Yang-Mills)

and a string theory [40–42] (see [43] for a review).
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From (2.3) and (2.4) it follows that each twisted sector corresponds to a conjugacy class [g]

of the symmetric group. The twist field σ[g](z), defined in the z plane z = exp(τ + iσ), is

the local operator associated (in the state/operator correspondence) to the twisted sector

vacuum labeled by [g]. Let us first introduce twist operators σg(z), labeled by individual

elements g of SN , such that the fields XI have monodromy

Xi
I(e

2πi z)σg(0) = Xi
g(I)(z)σg(0) . (2.5)

Clearly the σg’s are not SN -invariant. The proper “gauge-invariant” twist field σ[g], labeled

by a conjugacy class, is obtained by summing over the group orbit,

σ[g] ≡
∑

h∈S(N)

σh−1gh . (2.6)

We are interested in correlators of gauge-invariant twist operators,
〈

s
∏

j=1

σ[gj] (zj, z̄j)

〉

=

〈

s
∏

j=1

∑

hj∈S(N)

σhjgjh−1
j

(zj, z̄j)

〉

. (2.7)

Their computation is reduced to evaluating individual terms of the form

〈σĝ1(z1, z̄1) . . . σĝs
(zs, z̄s)〉 , (2.8)

where we have set ĝj = hjgjh
−1
j . We will restrict to correlators defined on the plane, or

Riemann sphere (henceforth the base sphere S2
base). In the operator formalism correlators

on the sphere are written as radial ordered vacuum expectation values. We can always

assume (by renaming the coordinates if needed) that |z1| ≤ |z2| ≤ · · · ≤ |zs|. Then

〈σĝ1(z1, z̄1) . . . σĝs
(zs, z̄s)〉 = 〈0|σĝs

(zs, z̄s) . . . σĝ1(z1, z̄1)|0〉 . (2.9)

Each term is specified by an ordered sequence (ĝ1 . . . ĝs) of s group elements of SN , with the

ordering dictated by the radial ordering of the coordinates. A necessary condition for (2.9)

to contribute to (2.7) is that

ĝ1ĝ2 . . . ĝs = 1 . (2.10)

A sequence (ĝ1 . . . ĝs) and the corresponding term (2.9) will be called non-trivial if this

condition is obeyed. From now on, all sequences will be assumed to be non-trivial.

Two ordered sequences of n group elements of SN are said to be equivalent if they are

related by a global SN transformation,

(ĝ1 . . . ĝn) ∼
(

hĝ1h
−1 . . . hĝnh−1

)

, (2.11)

that is, by an overall relabeling of the color indices. Terms (2.8) specified by equivalent

sequences are numerically equal, so it is sufficient to evaluate a representative for each class

and multiply by the number of elements in the class.

Our goal is to associate a diagram to each non-trivial equivalence class, and to regard

the gauge-invariant correlator (2.7) as a sum of such diagrams.
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Henceforth we shall restrict to twist fields σ[g] corresponding to single-cycle permu-

tations. Recall that each element g ∈ SN is the product of mutually commuting cyclic

permutations. The number Nk of cyclic permutations of length k is the same for each ele-

ment of a conjugacy class [g]. Conjugacy classes are thus in correspondence with partitions

of N , ordered sequences of non-negative integers (N1 . . . NN ) obeying

N
∑

k=1

k Nk = N . (2.12)

A single-cycle permutation of length s > 1 corresponds to Ns = 1, N1 = N − s and Nk = 0

for k 6= 1, s. We will use the notation

g = (i1 . . . is) , ik ∈ {1, 2, . . . , N} , (2.13)

for the single-cycle permutation i1 → i2, i2 → i3, . . . is → i1.

The restriction to single-cycle permutations is not essential, since twist fields with

more complicated cycle structure can be obtained by considering single-cycle twist fields

at separated points and taking the OPE limit. Moreover, single-cycle permutations play a

preferred role in physical applications — for instance, they are associated to single-particle

states in the AdS3/CFT2 duality. By a slight abuse of notation, we denote single-cycle

twist operators with σ[k], where k is the length of the cycle. Recalling (2.6), we have

σ[k] =
∑

h∈SN

σ(h(1)...h(k)) . (2.14)

2.1 “Feynman” rules

Let us consider a very simple example of correlator,

〈

σ[3](za, z̄a)σ[2](zb, z̄b)σ[2](zc, z̄c)
〉

. (2.15)

We assume that |za| < |zb| < |zc|. We have3

〈

σ[3](a)σ[2](b)σ[2](c)
〉

=
∑

ha,hb,hc∈SN

〈

σ(ha(1)ha(2)ha(3)) σ(hb(1)hb(2)) σ(hc(1)hc(2))

〉

. (2.16)

Most of the terms do not contribute because the product of permutations (in the given

ordering a b c) is different from the identity. A non-trivial term is

〈σ(123)(a)σ(12)(b)σ(23)(c)〉 ≡ (123)a (12)b(23)c , (2.17)

where on the right hand side we have introduced a convenient short-hand notation. There

are three “active” colors (1, 2 and 3). It is easy to see that this is in fact the only

non-trivial term, up to renaming of the active colors (accomplished by a global SN trans-

formation (2.11)).4 In this simple case there is only one equivalence class. We now give

our prescription to draw the corresponding diagram.

3To avoid cluttering we will often drop the dependence on the coordinates, implicit in the ordering

of the operators (always a, b, c, . . . ). Sometimes the dependence will be indicated schematically, as in

σ[s](i) = σ[s](zi, z̄i). Another short hand will be to drop “σ” and write e.g. (324)i ≡ σ(324)(zi, z̄i).
4An example of equivalent term would be (352)a (35)b (52)c, obtained by relabeling 1 → 3, 2 → 5, 3 → 2.
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b

a

c

c
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b

2

3

1

a b

c

Figure 1. We illustrate the construction of the diagram for the term (1 2 3)a(1 2)b(2 3)c. On the

left we have the first step of the construction: we draw fatgraphs loops for each of the indices (active

colors), marking the appropriate vertices (letters) on the outer side of the loops. On the right we

glue the vertices to obtain the diagram.

For each active color we draw a “fatgraph” loop (see figure 1), writing the corresponding

index inside the inner circle. The two sides of the fatgraph are inequivalent — the inner cir-

cle is drawn with a solid line and the outer circle with a dashed line. We will refer to the solid

line as the “color line”. We mark the external (dashed) line of each fatgraph with the labels

of the twist fields that contain the corresponding color. (So for example, in (2.15) the twist

field b contains colors 1 and 2 and is represented by the letter b on fatgraphs 1 and 2). The

cyclic ordering of the twist fields on each loop is determined by the radial ordering (abc in

the example). Finally (right side of figure 1) we glue the non-color loops together at the po-

sitions of the twist fields, in such way that the order of the loops at each vertex (circling the

vertex counterclockwise) corresponds to the cycle structure of the corresponding twist field.

As another illustration of this construction, the left side of figure 2 depicts a specific

term appearing in the expansion of 〈σ[3](a)σ[2](b)σ[2](c)σ[3](d)〉. The procedure is com-

pletely general and allows to associate a diagram to any (non-trivial) term appearing in

the expansion of a generic correlator. It is also clear that equivalent terms give rise to

topologically equivalent diagrams, differing only by a relabeling of the color indices.

A term is said to be reducible if the group elements {ĝj} can be split into two sets so

that the elements in each set act trivially on the elements of the other set. (Another way to

state this condition is to say that the group elements {ĝj} of an irreducible term generate

a transitive subgroup of SN .) A reducible term factorizes into irreducible components. If

a term is reducible, all the terms in the same class are reducible, so we may speak of re-

ducible and irreducible classes. It is clear that our procedure associates irreducible classes

to connected diagrams, and reducible classes to disconnected diagrams. The usual combi-

natorial arguments apply: the generating functional of all diagrams is the exponential of

– 6 –
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Figure 2. On the left, the diagram corresponding to (132)a(24)b(34)c(241)d. A red (solid) dot

is drawn for clarity on the inside of each color (solid) loop and is labeled by a color index. Each

vertex (letter) corresponds to a twist field: going around the vertex counterclockwise one reads off

the color indices of the corresponding cyclic permutation. On the right, the (graph theoretic) dual

diagram, obtained as usual by dualizing vertices into faces. Each loop in the dual graph corresponds

to a twist field.
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�
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��
��

��
��
��
��
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�

2

3

1

a

Figure 3. The vertex corresponding to σ(123)(za, z̄a). The solid lines (color lines) are numbered

counter-clockwise in the cyclic ordering (123). The letter in the center labels the coordinate of the

twist operator.

the generating functional of irreducible diagrams.5 We may thus restrict our analysis to

connected diagrams.

In our diagrams, twist fields correspond to vertices. An s-cycle twist field corresponds

to a vertex with 2s fatgraph propagators emating from it: s solid (“color”) and s dashed

oriented lines, in alternating order, as shown in figure 3. Each vertex is labeled by the

coordinate where the corresponding twist field is inserted. The diagrams generated by our

procedure are not the most general diagrams that we may draw starting with a set of

vertices and connecting the fat graph propagators in all possible ways. Indeed all diagrams

are subject to two restrictions:

1. The number of color (solid) loops is equal to the number of non-color (dashed) loops.

5Note however the following subtlety: the N dependence of a term which splits into several irreducible

components is not equal to the product of N dependencies of each of the components, because in contrast

to ordinary gauge theories, there should not be joint colors between different irreducible components of a

given term.
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1

2

a
b c

d

3 4

Figure 4. Two examples of illegal diagrams. (To avoid cluttering of the figures we draw the

fatgraph propagators with a single line, and use red dots to denote the “color” (solid) sides of the

propagators.) On the left the numbers of two types of loops do not coincide (three color loops and

two non-color loops). On the right the partial orderings defined by the color loops are incompatible:

color 1 defines partial ordering on vertices abc, and color 2 defines the inverse ordering bac.

2. The solid and dashed loops define partial cyclic orderings of the vertices. By conven-

tion the solid loops are oriented counterclockwise and the dashed loops are oriented

clockwise. All these partial orderings must be compatible with the radial ordering of

the vertices.

figure 4 gives two examples of diagrams violating these restrictions.

To understand the first restriction, we can view the dashed loops (with clockwise

orientation) as the “trajectories” of each index. Consider the example of figure 2,

(1 3 2)a (2 4)b (3 4)c (1 2 4)d. (2.18)

There are four active colors and thus four color loops. The four “trajectories” are

(1′) = 1 →a 3 →c 4 →d 1, (4′) = 2 →a 1 →d 2, (2.19)

(2′) = 3 →a 2 →b 4 →c 3, (3′) = 4 →b 2 →d 4.

The superscripts on the arrows correspond to the vertices. One can read off the “trajec-

tories” from the diagrams by going clockwise along the dashed loops. Since the product

of the cycles multiplies to the identity, the number of trajectories is always equal to the

number of active colors. Thus the numbers of the two types of loops are equal.

The second restriction holds by construction for the partial orderings associated to the

color loops. It holds for the non-color loops because the trajectories of the indices follow

the ordering of the group elements, which coincide by construction with the radial ordering

of the vertices.

Viceversa, given a diagram6 obeying the two restrictions, we can uniquely associate to

it a non-trivial equivalence class of terms. We just label the color loops with indices from

1 to c (= number of active colors), and associate to each vertex the twist field obtained

by reading the color indices counterclockwise around the vertex. (The way indices are

assigned to the color loops is immaterial, as different choices are related by a global SN

6In speaking of a “diagram”, we mean “a diagram with labelled vertices” (by the coordinates of the

corresponding twist operators).
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transformation.) Thus the correspondence between diagrams and equivalence classes of

terms is one-to-one.

We are finally in the position to quote our “Feynman” rules to write a correlator as a

formal sum of diagrams. Given a generic correlator of gauge-invariant twist fields,

〈

σ[n1](a1) . . . σ[ns](as)
〉

, |za1 | < |za2 | < . . . |zaa | , (2.20)

to compute its connected part we draw all connected diagrams having s vertices of type

nk, k = 1, . . . s, with no self-contractions at each vertex, and obeying the two restrictions

discussed above. We can write

〈

σ[n1](a1) . . . σ[ns](as)
〉

conn
=
∑

α

Cα(N, {nj})
〈

s
∏

j=1

σ
g
(α)
j

(aj)

〉

, (2.21)

where the index α runs over all the contributing (connected) diagrams, which by con-

struction are in one-to-one correspondence with the equivalence classes of (connected)

terms. The ordered sequence of group elements g
(α)
1 . . . g

(α)
s is a representative of the class.

The numerical factor Nα(N, {nj}) counts the number of terms in each class and will be

determined shortly.

Given a diagram, we can construct its graph-theoretic dual by the usual procedure

of dualizing vertices into faces, as illustrated in figure 2. The dual diagrams are bipartite

graphs, with red (solid) and white (empty) nodes, corresponding respectively to the color

(solid) loops and the non-color (dashed) loops of the diagram before dualization. The twist

operators map to the faces of the dual diagram. Since dual diagrams are perhaps easier to

draw, we will mostly use them in the rest of the paper.

As a concrete application of the Feynman rules, let us consider the correlator

〈

σ[3](a)σ[2](b)σ[3](c)σ[2](d)
〉

, |za| < |zb| < |zc| < |zd| . (2.22)

All contributing (dual) diagrams are depicted in figure 5. There are six genus-zero and two

genus-one diagrams and no higher genus contributions. If we consider instead the same

correlator (2.22) but with a different ordering of the coordinates,

〈

σ[3](a)σ[2](b)σ[3](c)σ[2](d)
〉

, |za| < |zc| < |zb| < |zd| , (2.23)

another set of diagrams contributes to the calculation. They are depicted in figure 6. There

are again six genus zero and two genus one diagrams. As we are going to explain shortly,

this is a general property: the number of diagrams of given genus is the same for different

radial orderings.

The genus of a diagram is easily computed. A diagram contributing to the s-point

correlator of twist operators σ[nj ], j = 1, . . . s, and containing c active colors, is a polygon

with v = s vertices, f = 2c faces and e =
∑s

j=1 nj edges. Its genus is then

g =
1

2
(e − v − f + 2) =

1

2

s
∑

j=1

(nj − 1) − c + 1 . (2.24)
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Figure 6. Connected diagrams contributing to 〈σ[3](a)σ[2](b)σ[3](c)σ[2](d)〉 when |za| < |zc| <

|zb| < |zd|.

We recognize the Riemann-Hurwitz relation, which determines the genus of a c-sheeted

covering of the sphere with s ramification points of order nj. The relation between diagrams

and ramified coverings of the sphere will be made explicit in the next subsection.
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We can re-write the expansion of a correlator making manifest the sum over genera,

〈

σ[n1](a1) . . . σ[ns](as)
〉

conn
=

gmax
∑

g=0

∑

αg

Cg,αg
(N, {nj})

〈

s
∏

j=1

σ
g
(αg)
j

(aj)

〉

g

, (2.25)

where the index αg runs over the diagrams of genus g. We can now see more clearly the

analogy between twist correlators in the symmetric orbifold theory and correlators of gauge-

invariant composite operators in a conventional free gauge theory. In both cases any given

correlator is given by a finite sum over diagrams, with the genus of the diagrams bounded by

some gmax (which depends on the correlator). A curious difference is that while in a gauge

theory the basic vertex is cubic, in a symmetric orbifold the basic vertex is quartic, associ-

ated to a twist-two field. So in a gauge theory the dual of a generic Feynman diagram gives a

triangulation of a Riemann surface, but in a symmetric orbifold it gives a quadrangulation.

2.2 Correspondence between diagrams and branched coverings

We have discussed a combinatorial algorithm to associate a diagram to each non-trivial

equivalence class of terms in the expansion of a correlator of gauge-invariant twist fields.

The diagrams have a nice geometric interpretation as well. The actual computation of cor-

relators requires finding the covering surface(s) where the fields XI are single-valued. Each

covering surface is a c-sheeted ramified covering7 of the base sphere, with a ramification

point at each insertion of a twist field: a twist field σ[n](z, z̄) corresponds to a ramification

point of order n at z. The computation of the correlator

〈

σ[n1](z1, z̄1) . . . σ[ns](zs, z̄s)
〉

(2.26)

requires finding all the ramified coverings of the sphere with ramification points of order

ni at zi. It turns out that for any given gauge-invariant correlator, the different diagrams

correspond to the different ramified coverings.

The enumeration of branched coverings of the sphere with specified ramification type

is a classic mathematical problem, known as the Hurwitz problem. There is a reformulation

of the Hurwitz problem in terms of subgroups of the symmetric group (see e.g. [37]). Let us

define H(n1, . . . , ns) to be the number of different ramified coverings of the sphere with s

ramification points of order ni, i = 1, . . . s. Consider s-tuples (g1, g2, . . . , gs), where gk ∈ SN

is a single-cycle permutation of length nk, and define the equivalence relation

(g1, g2, . . . , gs) ∼
(

g′1, g
′
2, . . . , g

′
s

)

↔ ∃h ∈ SN : g′k = hgkh−1 for k = 1 . . . s . (2.27)

7We recall the definition (see e.g.,Lando2 ): a continuous map f : C → S2 from an oriented compact

surface C to the sphere is called a c-sheeted ramified covering of the sphere if: (i) the image of f contains a

finite subset of points {z1, . . . zs}, such that the map f is a c to 1 covering over the complement of this set;

(ii) in a neighborhood of each point zi one can introduce a complex coordinate, and in the neighborhood of

each of the pre-images of this point one can also introduce a complex coordinate x, such that the map takes

the form f(x) = xni . Here ni is an integer, called the order of ramification of the point zi. A theorem of

Riemann states that chosen a complex structure on the S2, there is a unique complex structure on C such

that f is a meromorphic function.
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A fundamental theorem in Hurwitz theory states that H(n1, . . . , ns) is equal to the number

of equivalence classes of s-tuples (g1, g2, . . . , gs) such that

1. the subgroup of SN generated by the gk is transitive, and

2. gπ(1)gπ(2) . . . gπ(s) = 1,

where π ∈ Ss is some arbitrary ordering of the ramification points {1, 2, . . . , s}.
It follows that H(n1, . . . , ns) is equal to the number of non-trivial equivalence classes of

terms (as defined in the previous subsection) in the expansion of the connected part of

the correlator (2.26); thus the number of ramified coverings with ramification type {ni} is

equal to the number of connected diagrams that contribute to the correlator (2.26), as we

had claimed.

In the previous subsection it was natural to choose the arbitrary ordering π to be the

radial ordering of the coordinates zi. We see that any other ordering would give the same

number of equivalence classes (=diagrams) — this explains why changing the ordering

of the coordinates gave the same number of diagrams in the example of figure 6. This

means for a given ramified covering, there are really (s − 1)! diagrams, corresponding to

the different choices of π (taking into account that cyclically related choices yield the same

diagram): but precisely one diagram for each ramified covering appears in the expansion of

a correlator of gauge-invariant twist fields, namely the one that corresponds to the choice

of π as radial ordering.

We have established that the number of diagrams in the expansion of a correlator

equals the number of contributing ramified coverings: we now proceed to associate a par-

ticular diagram to each ramified covering. We discuss two equivalent methods in the rest

of this subsection.

Cut-picture method. For a given branched covering of the sphere, we can think of

the covering surface C as a union of c Riemann sheets, each corresponding to a copy of

the base sphere, and with a system of cuts defined on each copy. It is always possible

to deform the cuts in such a way that a cut line emanates from each ramification point

and goes to infinity (in some direction). Given such a picture, there is a natural cyclic

ordering defined on the ramification points, obtained by ordering the cut lines at infinity

in counterclockwise fashion. The cyclic orderings on the different Riemann sheets are

consistent with each other. We can also assume that the point z = ∞ on the base sphere

is a regular point (no twist field insertion), and thus the point of infinity in each sheet is

also not ramified.

To build the diagram from such a cut picture, we draw an oriented loop on each

Riemann sheet (with counterclockwise orientation as a matter of convention) — this is the

color (solid) loop. Next, beginning with one of the sheets, we start drawing another line

just outside of the color loop, in clockwise direction; as we encounter a cut, we move to

a new sheet and keep going till we come back to the original sheet, and finally close the

loop. We repeat the procedure for each sheet. These are the non-color loops. Finally we

– 12 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
4

C

D

D

1

2

A

B

B

A

C

(1 2)

(1 2)

Figure 7. From the cut-picture to the diagram: example of a two-point correlator. The dashed and

not dashed lines are the non-color and color loops respectively. The two sides of cuts are labeled

by capital letters. On the left we draw the cut picture and show how the diagram can be drawn

on the different sheets. The color loops are associated with each Riemann sheet and the non-color

loops follow the “trajectories” around infinity, i.e. they follow the trajectory of each color under the

action of the twist operators. Each trajectory encircles z = ∞ exactly once.
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1
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3

(1 3) (2 3)

(1 2 3)

Figure 8. From the cut-picture to the diagram: example of a genus zero branched covering

contributing for a three-point correlator.

smoothly deform the color and non-color lines to obtain the diagram. This procedure is

illustrated in few examples in figures 7, 8 and 9.

The circular ordering and the fact that the point at infinity on each sheet is a regular

point imply that the diagrams are legal diagrams satisfying the two restrictions discussed

in the previous subsection.

Inverse-image method. There is an even simpler way to obtain the diagram from

the branched covering. We draw a closed loop without self-crossings on the base sphere,

touching the positions of the twist fields. The closed loop divides the base sphere into two
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Figure 9. From the cut-picture to the diagram: example of a genus one branched covering con-

tributing to a four-point correlator.

Figure 10. An example of the inverse-image method, applied to the correlator 〈σ[2]σ[2]σ[3]〉. On

the left we show the base sphere with the twist -wo fields inserted at z = 0, 1 and the twist-three

field at z = ∞. We connect the insertions by a line going through the real axis. On the right

we show the pre-image of this line on the covering sphere. The insertions are now at t = 0, 1 and

t = 1
2 + 1

2 i respectively. The explicit branched covering map is z(t) = t2 −3i+(1+3i)t
(−i+(1+i)t)3 . One finds the

same diagram as the one obtained from the cut picture in figure 8.

regions: after choosing an orientation for the loop, by convention the “color” region is to

the left of the loop and the “non-color” region to the right. The inverse image of this loop

on the the covering space defines the diagram. Figure 10 illustrates this procedure in a

simple example.

Both methods to associate a diagram to a branched covering require to make some

implicit choices. In the first method, for a given branched covering there is some freedom

in drawing the cuts, implying different cyclic ordering on the operators. Likewise, in the

second method the closed loop can be chosen to connect the locations of the twist fields

in different orders. In either method, different choices will result in a different diagram

(for fixed branched covering). This ambiguity is precisely the freedom in the choice of the

arbitrary ordering π in the theorem quoted above. In the application to 2d CFT, the natural
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ordering is radial ordering. Any ordering would lead to the same result, but an ordering

must be chosen to avoid overcounting. In appendix B we look at OPE limits of four-point

functions and perform a check that our prescription of choosing one ordering (as opposed to

summing over all possible orderings) gives indeed the correct normalization of correlators.

In section 3.4 we will expand on the relation between diagrams and ramified coverings.

In particular we will show that the different diagrams contributing to a given correlator

can be connected to each other by a certain “channel-crossing” procedure.

2.3 N dependence.

Following [28, 29], we now determine the N dependence of correlation functions. The first

step is to introduce normalized twist operators σ̂[n](z) with unit two-point functions,

〈

σ̂[m](0)σ̂[n](z)
〉

=
δmn

|z|2∆n
. (2.28)

The two-point function
〈

σ[m](0)σ[n](z)
〉

=
∑

h∈SN

∑

k∈SN

〈

σh(1...m)h−1(0)σk(1...n)k−1(z)
〉

(2.29)

vanishes unless n = m, since the orders of the two ramification points must coincide

for the covering surface to exist: diagrammatically we can say that self-contractions of

propagators at each vertex are not allowed. There are n fatgraph propagators joining the

two vertices and thus c = n active colors. The graph is planar, as one can confirm from

the Riemann-Hurwitz relation (2.24), which gives g = 0 with s = 2, n1 = n2 = c = n.

There are N !/(N − c)! possibilities of choosing the active colors. Moreover for each of

the gauge-invariant twist operators, we can permute the N − n non-participating colors

in all possible ways, contributing a factor of ((N − n)!)2. Finally there is an extra factor

of n which accounts for the freedom to make a cyclic permutation of the chosen colors;

diagrammatically it counts the number of Wick contractions. All in all,

〈

σ[m](0)σ[n](z)
〉

= n N !(N − n)!
δnm

|z|∆n
, (2.30)

which implies

σ̂[n] ≡
1

√

n N !(N − n)!
σ[n]. (2.31)

We are interested in the N dependence of s-point functions of normalized operators. Let

us re-write the expansion (2.25) for normalized operators,

〈

σ̂[n1](a1) . . . σ̂[ns](as)
〉

conn
=

gmax
∑

g=0

∑

αg

Ĉg,αg
(N, {nj})

〈

s
∏

j=1

σ
g
(αg)

j

(aj)

〉

g

, (2.32)

where we recall that {αg} is the set of diagrams contributing to the correlator at genus g.

We find

Ĉg,αg
(N, {nk})=A({nk})





s
∏

j=1

√

(N−nj)!

nj N !





N !

(N−c)!
, c=1−g− s

2
+

1

2

s
∑

j=1

nj . (2.33)
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The coefficient A({ni}) is the N -independent combinatorial factor that arises from Wick

contractions; it simply accounts for the freedom of cyclic re-ordering of each vertex, so

A({nk}) =

s
∏

j=1

nj . (2.34)

The term in square brackets comes from the normalization factors of each operator and

from the number of permutations of the colors not participating in the given cycle. Finally

the last factor counts the number of ways to pick the c (ordered) active colors; for given

{ni} and given genus, c is determined by the Riemann-Hurwitz relation. Using the Stirling

formula, we can expand Ĉg,αg
(N, {nk}) for large N ,

Ĉg,αg
(N, {nk}) = N1−g− s

2

(

a0 +
a1

N
+ . . .

)

. (2.35)

The leading N dependence is very simple, but for given g and s there is a whole infinite

series of subleading terms. This is to be contrasted with the standard case of a U(N)

gauge theory, where the N dependence of correlators of normalized single trace operators

is precisely N2−2g−s.

The functions Ĉg,αg
(N, {nk}) are independent of the specific diagram αg: for a given

correlator they are functions only of g and N . This property can be understood heuristically

by recalling that a correlator of gauge-invariant twist fields must be single-valued as a

function of the coordinates of the twist fields. However, as we will see, the contributions

of the individual diagrams are in general not single valued. The different diagrams at a

given genus correspond to the different zeros of a meromorphic function, and to cancel the

branch cuts we must take the sum of such roots with equal weight. The diagrams should

then have a common N dependence for their sum to produce a single-valued correlator.

If we wish to deform the symmetric orbifold CFT while maintaing a sensible large N

limit, the coupling of the deformation term should be scaled appropriately. For example we

may add to the action a two-cycle term (a blow-up mode of the orbifold), schematically8

δS = f

∫

d2z σ̂[2](z) . (2.36)

We deduce from (2.33) that a sensible large N limit requires

N → ∞, f N− 1
2 ≡ λ = fixed . (2.37)

The combination λ plays the role of the ’t Hooft coupling.

2.4 Computing the correlators

To evaluate correlators of twist fields, we can use the covering surface(s) in at least two

ways: the stress-tensor method of Dixon et al. [45] and the path-integral method of Lunin

and Mathur [29].

8In the case of SymN (M4), the precise form of the deformation that preserves (4, 4) superconformal

invariance can be found for example in [16].
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The standard approach to the calculation of twist correlators is the stress-energy tensor

method [45], which is applicable to s-point functions with s > 3. To evaluate, say, a four-

point function, we consider the quantity

g(z, u) =
〈T (z)φ1(0)φ2(1)φ3(u)φ4(∞)〉

〈φ1(0)φ2(1)φ3(u)φ4(∞)〉 , (2.38)

where T (z) is the stress-energy tensor and φi(z) denotes schematically the holomorphic

part of a primary operator in a twisted sector. As we have seen, several covering surfaces

(one for each diagram αg) contribute to the correlator. For each αg, we can find g(z, u) by

map to the covering surface, taking into account the well-known transformation properties

of T and of the primaries φ. Using the OPE of T (z) with φ(u),

T (z)φ2(u) =
∆φ3

(z − u)2
φ3(u) +

1

z − u
∂φ3(u) + . . . (2.39)

we deduce

∂u ln G(u)αg
=
{

g(z, u)αg

}

1
z−u

. (2.40)

Here G(u)αg
≡ 〈φ1(0)φ3(1)φ3(u)φ4(∞)〉αg

is the contribution to the holomorphic part of

the correlator from the covering surface αg; on the right hand side we take the coefficient

of 1
z−u in the expansion of g(z, u). This equations determine G(u)αg

up to a normalization

factor. After repeating the same calculation for the anti-holomorphic part, we sum the

partial contributions G(u, ū)αgg over all the covering surfaces {αg}. The relative normal-

izations can be fixed by requiring that the result is well-defined (single-valued) on the base

sphere, while the overall normalization can be fixed by looking at OPE limits. Three-point

functions can be obtained indirectly by factorization of four-point functions.

Lunin and Mathur [29] devised an alternative computational method that uses directly

the path integral definition of the theory. In going to the covering surface, we have to take

into account the transformation of the measure of the path integral, which may be encoded

in a certain Liouville action. This approach has the advantage of keeping track of the abso-

lute normalization of correlators and can thus be directly applied to three-point functions,

for which the only non-trivial piece of information is indeed the overall normalization. In

appendix B we apply the results of [29] to evaluate the intrinsic normalization of some four-

point functions, and check the consistency of our “Feynman rules” in various OPE limits.

3 Planar covering surfaces for four-point correlators

It is in general difficult to find explicit expressions for the branched covering maps. In

this section we focus on the simplest non-trivial class of branched coverings, the genus

zero covering surfaces with four ramification points. We will present a general algorithm

to obtain them, in terms of polynomial solutions of Heun’s differential equation. We will

also study in detail some simple examples, with the aim of gaining more insight into the

relation between covering maps and associated diagrams.
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3.1 Heun’s equation

Consider the four-point correlator

〈

σ[n1](z1)σ[n2](z2)σ[n3](z3)σ[n4](z4)
〉

, (3.1)

defined on the base sphere S2
base. We will always use the letter z to denote the uniformizing

coordinate on S2
base. By an SL(2, C) transformation, we fix

z1 = 0 , z2 = 1 , z3 = u , z4 = ∞ . (3.2)

We will denote with t the uniformizing coordinate on the covering surface, also taken to

be a sphere, S2
cover The goal is to find all the covering maps

t ∈ S2
cover → z(t) ∈ S2

base (3.3)

with four ramification points zi of order ni. The ramification points zi have unique pre-

images ti on S2
cover, which by another SL(2, C) transformation we fix to

t1 = 0 , t2 = 1 , t3 = x , t4 = ∞ . (3.4)

At this stage the location x of the pre-image of ramification at z = u is a parameter of the

map. We will see that there is a discrete set of possible values for x for fixed value of u.

The Riemann-Hurwitz relation (2.24) gives the number c of sheets in the ramified covering,

c =
n1 + n2 + n3 + n4

2
− 1 . (3.5)

In CFT language, the c copies (colors) of the field, XI(z), I = 1, . . . c, are traded for a

single field X(tI(z)) ∈ S2
cover, where tI(z) ∈ S2

cover are the pre-images of the generic point

z ∈ S2
base. As z approaches a ramification point zi, ni of its pre-images converge to the

same point ti on S2
cover.

In summary, we are looking for a c-sheeted map z : S2
cover → S2

base with the following

branching behavior:

lim
t→0

z(t) ∼ b1t
n1, (3.6)

lim
t→1

z(t) ∼ 1 + b2(t − 1)n2 , (3.7)

lim
t→x

z(t) ∼ u + b3(t − x)n3 , (3.8)

lim
t→∞

z(t) ∼ b4t
n4 . (3.9)

We will generalize to our case the technique used in [29], where coverings with three branch-

ing points were considered. We build the map as a quotient of two polynomials,

z(t) =
f1(t)

f2(t)
, (3.10)

of degrees d1 and d2 respectively, which we can assume to have no common factor.

From (3.6– 3.8), we must have f2(t) 6= 0 for t = 0, 1, x, while from (3.9) we deduce

d2 = d1 − n4 . (3.11)
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In particular d1 > d2, and since z(t) = z should have generically c solutions, we identity c

with the degree d1. Then from (3.5),

d1 = c =
n1 + n2 + n3 + n4

2
− 1 , (3.12)

and thus clearly

d2 =
n1 + n2 + n3 − n4

2
− 1 . (3.13)

Consider now the linear combination

f(t) = αf1(t) + βf2(t) , (3.14)

which satisfies
∣

∣

∣

∣

∣

∣

∣

f f ′ f ′′

f1 f ′
1 f ′′

1

f2 f ′
2 f ′′

2

∣

∣

∣

∣

∣

∣

∣

= 0 . (3.15)

Expanding the determinant, we get the following equation for f

W (t)f ′′ − W ′(t)f ′ − c(t)f = 0 , (3.16)

where we have defined

W (t) ≡ f ′
1(t)f2(t) − f1(t)f

′
2(t) = f2

2 (t)
dz(t)

dt
(3.17)

c(t) ≡ f ′
2f

′′
1 − f ′

1f
′′
2 . (3.18)

The strategy is to determine the functions W (t) and c(t) from the branching

behavior (3.6)–(3.9), and then solve the differential equation (3.16) for f : its two solu-

tions will be identified with f1 and f2. We claim that W is given by

W (t) = Ctn1−1(t − 1)n2−1(t − x)n3−1 (3.19)

for some constant C. Indeed W should be a polynomial of degree d1+d2−1 = n1+n2+n3−3,

whose zeroes at 0, 1, x are fixed from (3.17) as

lim
t→0

dz(t)

dt
∼ tn1−1 lim

t→1

dz(t)

dt
∼ (t − 1)n2−1 , lim

t→x

dz(t)

dt
∼ (t − x)n3−1 . (3.20)

The unique such polynomial is (3.19). To obtain c(t), we expand (3.16) around t = 0,

− C(n1 − 1)tn1−2f ′(0) + c(t)f(0) + O
(

tn1−1
)

= 0 . (3.21)

Since f(0) is in general non-vanishing (because f2(0) 6= 0), we must have

c(t) ∼ tn1−2 + O
(

tn1−1
)

t → 0 . (3.22)
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A similar analysis around the points t = 1 and t = x, and the requirement that c(t) should

be a polynomial of degree n1 + n2 + n3 − 5, lead uniquely to

c(t) = tn1−2 (t − 1)n2−2 (t − x)n3−2 (tγ̃ + q̃) , (3.23)

where γ̃ and q̃ are arbitrary constants. It is convenient to write the derivative of W

(from (3.19)) as

W ′(t) = Ctn1−2(t − 1)n2−2(t − x)n3−2P (t, x) , (3.24)

where we have defined

P (t, x) ≡ (n1 − 1)(t − 1)(t − x) + (n2 − 1)t(t − x) + (n3 − 1)t(t − 1) . (3.25)

The differential equation (3.16) for f now becomes, after dividing by Ctn1−2(t−1)n2−2(t−
x)n3−2,

t(t − 1)(t − x)f ′′ − P (t, x)f ′ + (γt + q)f = 0 , (3.26)

where γ ≡ γ̃/C and q ≡ q̃/C. We can fix γ by taking the limit t → ∞ in (3.26). Assuming

that f(t) ∼ td for t → ∞, we find

d(d − 1) − d(n1 + n2 + n3 − 3) + γ = 0 . (3.27)

The two solutions to this equation are the degrees d1 and d2 of f1 and f2, thus we learn

γ = d1d2. (3.28)

The differential equation for f is finally

f ′′ −
[

n1 − 1

t
+

n2 − 1

(t − 1)
+

n3 − 1

(t − x)

]

f ′ +
(d1d2t + q)

t(t − 1)(t − x)
f = 0 . (3.29)

This is Heun’s equation.9

3.2 Polynomial solutions of Heun’s equation

The parameters of Heun’s equation are known functions of ni, i = 1, 2, 3, 4, except for q

and x. As we now proceed to show, the parameters q and x are fixed by requiring that

the two solutions f1(t) and f2(t) are polynomial and that the map z(t) ≡ f1(t)/f2(t) sends

t = x into z(x) = u.

We are looking for two polynomial solutions of Heun’s equation (3.29), one of degree

d1 and another of degree d2. Expanding either solution in a power series,

f(t) =

∞
∑

k=0

ck tk , (3.30)

9For a comprehensive discussion of this differential equation see [46].
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we demand that ck = 0 for k > di. The differential equation (3.29) gives the

recursion relation

ck+1(k + 1)(k − n1 + 1)x − ck(k [(k − n1)(1 + x) + x(1 − n2) + 1 − n3] + q)+

ck−1(k − 1 − d1)(k − 1 − d2) = 0 , (3.31)

for k ≥ 0, with the understanding that c−1 ≡ 0. We may take c0 and cn1 as input and

solve for all other ck’s from the recursion. The requirement that the recursion truncates

gives a first relation between the parameters q and x, according to the following algorithm.

If the four cycles have generic lengths na ≤ nb ≤ nc ≤ nd, we can always use SL(2, C) to

set na = n4 and nb = n1, so that

d2 − n1 =
1

2
(nc + nd − na − nb) − 1 ≥ −1 . (3.32)

There are two cases: (i) d2 − n1 ≥ 0, and (ii) d2 − n1 = −1.

Consider the first case,

n1 ≤ d2 < d1 , (3.33)

where the second inequality is true by construction (recall (3.11)). We find f1(t) by solving

the recursion with c0 = 0 and cn1 = 1, and demanding that

cd1+1(q, x) = 0 . (3.34)

It is clear from the recursion that cd1+1(q, x) is a polynomial in q and x. This procedure

yields f1(t) as a polynomial of degree d1 proportional to tn1. To obtain f2(t), we switch

on both c0 6= 0 and cn1 6= 0, and fix cn1+1/c0 by requiring that cd2+1 = 0. This determines

f2(t) up to an overall constant; by construction it is a polynomial of degree d2 which

is non vanishing at t = 0. Finally we fix the overall constant of f2 by demanding that

z(1) ≡ f1(1)
f2(1) = 1.

In the second case, d2−n1 = −1, we constrain q and find f1 as above, and f2 is simply

the solution with c0 = 1 and cn1 = 0, as in this case d2 = n1 − 1 and setting cn1 = 0 makes

this solution polynomial regardless of the value of q.

This procedure yields a map z(t; q, x) depending on the two parameters q and x. So

far q and x are constrained by one polynomial relation, eq. (3.34). A second relation arises

by recalling that x was defined as the pre-image of u on the covering sphere, hence

z(t = x; q, x) ≡ v(q, x) = u . (3.35)

The function v(q, x) ≡ z(t = x; q, x) is a rational function in x and q. So for fixed u, q and

x are determined by the system of two polynomial equations

cd1+1(q, x) = 0 (3.36)

v(q, x) = u ,

which has a finite set of solutions {(xi(u), qi(u)}. Substituting back in z(t; q, x), we find for

fixed u a finite set of maps {zj(t)}, for j = 1, . . . M . As discussed in section 2, the number
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M of maps corresponds to the number of equivalence classes of terms in the expansion

of the correlators, and there is a 1-1 correspondence between the maps and the diagrams

produced by the Feynman rules.

Let us examine in detail a specific example,

n1 = n4 = n , n2 = n3 = 2 −→ d1 = n + 1 , d2 = 1 . (3.37)

Condition (3.33) is not satisfied, but this case is simple enough that it can be solved without

invoking any SL(2, C) transformations.10 In this case choosing c0 = 0 leaves only cn and

cn+1 undetermined. Taking k = n in (3.31) we get

cn+1 = −n(1 + x) − q

x(n + 1)
cn . (3.38)

With k = n + 1 in (3.31), demanding cn+2 = 0,

− q cn+1 − (n − 1) cn = 0 . (3.39)

Thus, q satisfies a simple quadratic equation,

q2 − n(x + 1) q + x(n2 − 1) = 0 , (3.40)

which gives

q± =
1

2
n(1 + x) ± 1

2

√

n2(1 + x)2 − 4x(n2 − 1) . (3.41)

The function f1(t) is thus

f±
1 (t) = tn

(

1 − n(1 + x) ∓
√

n2(1 − x)2 + 4x

2x(n + 1)
t

)

. (3.42)

To find the second solution we take c0 = 1 and immediately find

c1 =
q

x(1 − n)
. (3.43)

Demanding the vanishing of c2,

(n(1 + x) − q)c1 + (n + 1) = 0 , (3.44)

which implies

q2 − n(1 + x)q + x(n2 − 1) = 0 , (3.45)

the same condition as above. From here we obtain for f2,

f±
2 (t) = 1 − n(1 + x) ±

√

n2(1 − x)2 + 4x

2x(n − 1)
t . (3.46)

10The map for this case was also obtained in [29].
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Finally the map is given by

z±(t;x) =

(

f±
2 (1)

f±
1 (1)

)

f±
1 (t)

f±
2 (t)

. (3.47)

For fixed x there are two possibilities, corresponding to the two values of q. Finally we

require that x is the pre-image of u,

z±(t = x;x) ≡ v±(x) = u . (3.48)

Explicitly we obtain

v±(x) =
1

2
xn−1

(

2x + n2(x − 1)2 ∓ n(x − 1)
√

n2(1 − x)2 + 4x
)

. (3.49)

Thus (3.48) has 2n solutions. Note that for both choices the set of solutions to (3.48) will

be the same: if we pick either q+ or q− and all solutions for x in (3.48), each map zj(t) is

obtained once.

It is instructive to count the number of different diagrams/equivalence classes that we

have in this simple example. To count the equivalence classes we count the number of ways

we can satisfy

(n)a (2)b (2)c (n)d = 1 (3.50)

modulo global SN transformations. The Riemann-Hurwitz relation implies that the number

of colors is c = n + 1. Assuming (n)a and (2)b have one overlapping index, say

(n)a (2)b = (1 2 . . . n)a(1n + 1)b = (1 2 . . . n n + 1) , (3.51)

we get that (n)d and (2)c have must also have one overlapping index. Modulo global

SN transformations there are exactly n + 1 possibilities for this case, indeed fixing SN by

choosing the common index of (n)a and (2)b we have n + 1 choices for the common index

of (n)d and (2)c. Assume now that (n)a and (2)b have two overlapping indices, say

(n)a (2)b = (1 2 . . . n)a(1 k)b = (1 2 . . . k − 1)(k . . . n) . (3.52)

Now we must have either k = n or k = 2. Indeed if k 6= 2 and k 6= n, n different colors

would appear in cycles a and b (and the same colors would have to appear in c and d cycles

in order to satisfy (3.50)), in contradiction with the the fact that the total number of active

colors is c = n + 1. We can choose k = n as k = 2 choice is related to this by a global SN

transformation. The cycles (n)d and (2)c also have two overlapping indices,

(2)c (n)d = (k n + 1)c(n + 1 k − 1 k − 2 . . . 1n − 1 . . . k + 1 k)d = (n − 1n − 2 . . . 1) .

(3.53)

After fixing the global SN by choosing the two cycles (2)b and (n)a we have n−1 possibilities

to specify (2)c and (n)d by choosing a common color of (2)c and (n)a. In summary we have

(n+1)+(n−1) = 2n equivalence classes, exactly as the number of different maps, i.e. solu-

tions to (3.48). The actual (six planar) diagrams in the case of n = 3 are depicted in figure 6.
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3.3 Polynomial case

It is easy to solve for z(t) when d2 = 0: the map is just a polynomial and there is no need

to use Heun’s equation. We will refer to the correlators whose with polynomial covering

map as polynomial correlators. Setting d2 = 0 corresponds to taking

n4 = n1 + n2 + n3 − 2 = d1 . (3.54)

Then we also have d1 = n4. From the monodromies around the twist operators, we

must have

z′(t;x) = C tn1−1(t − 1)n2−1(t − x)n3−1 , (3.55)

which we can immediately integrate to get

z(t;x) = yn3

n1+n2−2
∑

k=0

ak yk + v(x) , y ≡ t − x . (3.56)

Note that in this case there is no parameter q. The coefficients ak can be explicitly com-

puted (see appendix A for details). We find that v(x) is given by

v(x) =
Nu

Du
, (3.57)

Nu =

n1−1
∑

k=0

n2−1
∑

l=0

(−1)k+l+n3

k + l + n3

(

n1 − 1

k

)(

n2 − 1

l

)

xn3+l(x − 1)−l

Du =

n1−1
∑

k=0

n2−1
∑

l=0

(−1)k+l+n3

k + l + n3

(

n1 − 1

k

)(

n2 − 1

l

)

[

xn3+l(x − 1)−l − x−k(x − 1)n3+k
]

.

From the explicit expression we see that in the polynomial case the equation z(t = x) ≡
v(x) = u has exactly n4 solutions and thus there are n4 different maps for any polynomial

four-point correlator. Let us reproduce this result diagrammatically.

Diagrams for a polynomial correlator have very simple structure. For definiteness we

insert the cycles of lengths n1 ≤ n2 ≤ n3 at finite points on the base sphere and the cycle

n4 = n1 + n2 + n3 − 2 at infinity. All propagators except two connect the cycles at finite

position to the cycle at infinity. One can convince oneself that the two extra propagators

must connect two different pairs of the cycles at finite positions — otherwise the orderings

inferred from the diagram will not be consistent. This observation leaves only the three

classes of diagrams illustrated in figure 11.

Let us count the different diagrams. From diagrams of class (I) with the n1 cycle

associated to position b, the n2 cycle to c and the n3 cycle to d, we get the right ordering

and the number of different diagrams is equal to the number of possible choices of k, which

is n2. From diagrams of class (II) with n1 → b, n2 → d, n3 → c we get the right ordering

and the number of possibilities for k is n3 − 1. By choosing another assignment of the

insertions, n1 → d, n2 → b, n3 → c we would get the same diagrams by graph symmetry

and thus these should not be counted twice. Finally, from diagram of class (III) with
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(I) : b c d a (II) : [ b, d ] c a (III) : c [ b, d ] a

Figure 11. The three classes of different diagrams that contribute to a generic polynomial four-

point correlator. The number over each line is the number of diagram propagators joined. The four

vertices are a, b, c, d, and a is the vertex at infinity. Below each diagram we write the ordering of

the vertices inferred from it. The commutator denotes that the two vertices commute.

n1 → c, n2 → b, n3 → d we get the right ordering and the number of possibilities for k is

n1 −1. Again, the second ordering in this case does not give rise to new diagrams. Finally,

counting all the possibilities we find n2 + (n3 − 1) + (n1 − 1) = n4 diagrams. As expected

the number of diagrams equals the number of covering maps.

As an additional example of application of the diagrammatic techniques consider the

following question: how many diagrams contribute in the OPE limit of say the σ[n1] colliding

with σ[n2] cycle in the bosonic orbifold (2.1)? The OPE of twist operators can be singular

only when the colliding cycles do not commute. In the polynomial case, for the n1 and n2

to not commute there has to be a single edge extended between them. All the diagrams in

classes (I) and (III) have this property but the diagrams of class (II) do not. Thus the

number of diagrams contributing in this OPE limit is n1 + n2 − 1.

As a more concrete example consider the polynomial correlator

〈

σ(2)(0)σ(3)(u)σ(2)(1)σ(5)(∞)
〉

. (3.58)

The function v(x) in this case is given by

v2235(x) = − −5 + 2x

3 − 10x + 10x2
x4 . (3.59)

Upon solving the v2235(x) = u equation we get five different solutions. There are eleven

different “unlabeled” diagrams (diagrams where the vertices have not yet been assigned to

a position on the base sphere) that could contribute to the 2235 case. They are shown in

figure 12. In general, as was discussed in section 2, the number of diagrams is equal to

number of maps only after we restrict to a given ordering of group elements. Indeed, as

one can see from figure 12, there are only five diagrams satisfying a given ordering. For

the radial ordering of (3.58) (with say |u| < 1), these are diagrams α2,6,9,10,11.

– 25 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
4

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

α1 = (1 2 3 4 5)(2 1)(5 4)(5 3 2) α2 = (1 2 3 4 5)(5 4)(1 5 3)(2 1) α3 = (1 2 3 4 5)(4 3 1)(2 1)(4 5)

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

α4 = (1 2 3 4 5)(5 4)(5 3)(5 2 1) α5 = (1 2 3 4 5)(5 4)(5 1)(3 2 1) α6 = (1 2 3 4 5)(5 4)(3 2 1)(3 5)

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

α7 = (1 2 3 4 5)(3 2 1)(4 3)(5 4) α8 = (1 2 3 4 5)(3 2 4)(4 1)(5 4) α9 = (1 2 3 4 5)(4 1)(3 2 1)(5 4)

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

α10 = (1 2 3 4 5)(5 4)(5 2 1)(2 3) α11 = (1 2 3 4 5)(5 4)(3 2 5)(5 1)

Figure 12. “Unlabeled” diagrams that could contribute to the polynomial correlator
〈

σ[2]σ[2]σ[3]σ[5]

〉

. Placing σ[3] at z = u and σ[5] at z = ∞ the restriction to radial ordering (with

|u| < 1) selects diagrams α2,6,9,10,11. Placing one of the σ[2]s at z = u, σ[3] at z = 1, σ[5] at z = ∞
and restricting to radial ordering (again with |u| < 1) we get diagrams α4,5,9 and two contributions

from α1 (the two 2-cycles in this diagram commute and give two distinct “labeled” diagrams, which

cannot be related by a global SN transformation).

3.4 Monodromies and channel-crossing

We have given in section 2.2 an algorithm to associate diagrams to branched covering

maps. We have repeatedly emphasized the 1-1 correspondence between the diagrams and

the branched coverings contributing to a given correlator. To gain some more insight into

this correspondence, we propose to look at the monodromies of the branched coverings

as we make a full 2π rotation of a ramification point around another ramification point.

To make the discussion concrete, let us focus on polynomial four-point correlators. As we

have seen, in the polynomial case the different branched coverings with given ramification

structure correspond to the different solutions of the equation

v(x) = u . (3.60)

As the insertion point u encircles one of the other insertion points, the solutions of (3.60)

are permuted into one another. On the diagrammatic side, the same operation corresponds

to a certain channel-crossing procedure, which we illustrate in figures 13 and 14. The group

of monodromies acts on the branched covering maps in the same way as a certain group of

channel-crossings acts on the diagrams. For simple correlators we can use this isomorphism

to determine the dictionary between diagrams and branched coverings, confirming the rules

of of section 2.2.
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a

b
a

1 2

a

b

b

4

π

2π

Figure 13. An illustration of a 2π rotation of one cycle around another. Here we rotate cycle

b = (1 2) around a = (1 4 3). After a rotation by π the cycle a crosses the branch cut of b and

becomes a → (2 4 3). After another π rotation the cycle b crosses a branch cut of a and becomes

b → (1 4).

a b

3

2

1

3

1

2

a

b

e2

e2

e1

e4

e1

e5

e7

e3

e7

e5

e6
e4

e3

e6

Figure 14. Channel-crossing exemplified. A propagator can be shrunk as two vertices are joined,

and expanded again by splitting the vertices in a different direction. One obstruction to the splitting

procedure is that all the “colors” at a given vertex should be different (as a vertex corresponds to

a cycle); the other obstruction is that the cyclic orders of the vertices should be consistent after

the channel-crossing. Thus not all splittings are allowed, unlike in a usual gauge theory. The

joining and splitting procedure simply corresponds to taking one vertex around the other on the

base sphere. In this figure the channel-crossing takes two 2-cycles (1 2)a and (2 3)b and transforms

them into (2 3)b and (1 3)a. This channel-crossing corresponds to a π rotation of b around a. Note

that a rotation by π depends on the choice of cut picture and should be viewed as an intermediate

step in a 2π rotation (see figure 13), which is unambiguous.

Let us discuss in complete detail the simple polynomial correlator

〈

σ[2](0))σ[2](u)σ[2](1)σ[4](∞)
〉

g=0
, |u| < 1 . (3.61)

We can easily draw all the different (four) diagrams contributing to this correlator following
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34

1

a

b

c

d

b

d

1

2

3

4

ac

α1 = (1 4)a(1 2)b(3 2)c(1 2 3 4)d α2 = (1 4)a(1 3)b(2 1)c(1 2 3 4)d

3 2

4
1

d

b

c

a

1

3
4

2

a

b

c

d

α3 = (1 4)a(2 3)b(1 3)c(1 2 3 4)d α4 = (3 1)a(2 1)b(3 4)c(1 2 3 4)d

Figure 15. The figure shows the four contributing diagrams to (Note that in α3,4 two adjacent

two-cycles commute, but the two orderings are related by a simple color relabeling, so only one

ordering should be counted as inequivalent.) These diagrams can be obtained from each other by

the channel-crossing procedure.

the Feynman rules of section 2, see figure 15; the graph-theoretic dual diagrams are shown

in figure 16. On the other hand, we can work out explicitly the branched covering maps.

We find

z(t;x) = t2
3t2 − 4t(1 + x) + 6x

2x − 1
, v2224(x) =

(x − 2)x3

1 − 2x
= u . (3.62)

For fixed u, there are four branched covering maps, corresponding to the four solutions to

u = v2224(x),

xαβ =
1

2

[

1+α
√

1+22/3(u2−u)1/3+β

√

2−22/3(u2−u)1/3+α
2−4u

√

1+22/3(u2−u)1/3

]

, (3.63)

where α, β = ±.

Changing perspective slightly, we can think of x as parametrizing the “moduli space”

of the maps {z(t;x)}.11 We write x ∈ Mcover, where in this case Mcover is the Riemann

sphere. As we vary u over the base sphere, the four roots xαβ(u) span Mcover. If we restrict

to a given radial ordering of the insertions, say specifying to |u| < 1, the possible values of

x are restricted to a subspace of the moduli space, x ∈ v−1
2224(|u| < 1) ≡ Mcover

|u|<1 ⊂ Mcover.

We can now define a cell decomposition of Mcover
|u|<1. In this example there are four cells,

spanned by the four roots xαβ(u) as we vary u. For a general polynomial correlator, our

11For a discussion of moduli space of maps in the context of matrix string theory see [47, 48].
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α3 = (1 4)a(2 3)b(1 3)c(1 2 3 4)d α4 = (3 1)a(2 1)b(3 4)c(1 2 3 4)d

Figure 16. The graph-theoretic duals of the diagrams in figure 15.

construction associates to each point of the moduli space a unique diagram. For generic

x, changing x does not change the associated diagram as the number of diagrams is finite:

we can then define a top cell of Mcover
|u|<1 as a region associated to a particular diagram.

The cell decomposition of Mcover
|v2224|<1 is drawn in figure 17. Depicted in this figure is

the x sphere. The red region is given by Mcover
|v2224|<1. The point u = 0 has two pre-images,

x = 03 and x = 2. A 2π rotation around x = 2 corresponds to 2π rotation around z = 0.

On the other hand, a 2π rotation around x = 0 corresponds to 6π rotation around z = 0.

The pre-images of u = 1 are x = 13 and x = −1, and the pre-images of u = ∞ are x = ∞3

and x = 1
2 . The blue lines delimit the different cells.

The decomposition into cells can be understood by looking at the monodromies of the

solutions (3.63) as u goes around the point z = 0, and at the corresponding channel-crossing

operations on the diagrams. The goal is to associate the four diagrams of figures 15 and 16,

αi, with the four cells of the moduli space (denoted by A1, A2, A3, A4 in figure 17).

First, consider the monodromies of the solutions. As we encircle the point z = 0 with

u in region A4, the solution goes back to itself; the other three cells are cyclically permuted.

The “monodromy” structure of the regions of the moduli space is

A1 → A3 → A2 → A1, A4 → A4 . (3.64)

Next, we look at the channel-crossing operation on the diagrams. Rotating u around z = 0

we get

α1 → α3 → α2 → α1, α4 → α4. (3.65)
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Figure 17. The structure of the moduli space Mcovering
2224 (the x sphere). The region in red is

v−1
2224( |u| < 1 ). The blue lines delimit the different cells. The closed curves correspond to images

of circles around |u| = const.

(1 3)

(1 2) (1 4)

(1 4)

(1 3)

(2 3)

(1 4)

(1 2)

(3 2)

Figure 18. channel-crossing of α2 to α1. The dashed blue line is the contracted propagator.

Explicitly starting with α2 we have

α2=(1 2 3 4)d(1 4)a(1 3)b(1 2)c→(1 2 3 4)d(1 4)a(2 3)c(1 3)b→(1 2 3 4)d(1 4)a(1 2)b(3 2)c =α1,

α1=(1 2 3 4)d(1 4)a(1 2)b(3 2)c→(1 2 3 4)d(1 4)a(1 3)c(1 2)b→(1 2 3 4)d(1 4)a(3 2)b(3 1)c =α3,

α3=(1 2 3 4)d(1 4)a(2 3)b(1 3)c→(1 2 3 4)d(1 4)a(1 3)c(1 2)b→(1 2 3 4)d(1 4)a(1 3)b(3 2)c =α2 .

(3.66)

Figures 19 and 18 illustrate the example of the channel-crossing between α2 and α1

We see that monodromy structure of the diagrams (3.65) is isomorphic to the mon-

odromy structure of the maps (3.64). We must associate diagram α4 to region A4, while

diagrams α1, α2, α3 correspond to regions A1, A2, A3, up to an ambiguity which amounts

to cyclic re-ordering of 1, 2 and 3 (the ambiguity could be resolved following the conventions

spelled out in section 2.2).
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(1 4)

(1 3)

(1 2)

z = ∞

z = 1

z = u

z = 0

Figure 19. Convention for the cuts used in diagram α2.

A similar discussion applies to any polynomial four-point correlator. In general the

solutions of v(x) = u cannot be found explicitly, but the qualitative picture of Mcover

can be understood by considering how the diagrams transform into one another through

channel-crossings. In the non-polynomial cases we have the additional parameter q and to

find the maps we have to fix both q and x by solving the two equations (3.36). We can

solve first for q as a function of x using (3.34), and denote the solutions (which are a finite

number) as qi(x). Then, we insert qi(x) in (3.35) to obtain a finite number of equations of

the form vk(x) = u. We can think of Mcover for a general four point correlator as consisting

of several copies of the sphere, one for each equation vk(x) = u, and we can repeat the

discussion above for each of the copies.

3.5 Covering surfaces = dual worldsheets: a localization conjecture

The genus expansion of correlators in a symmetric product orbifold is reminiscent of the

perturbative expansion of a closed string theory, much like the genus (large N) expansion of

a U(N) gauge theory in the classic analysis of ‘t Hooft [31]. While historically the genus ex-

pansion of gauge theories was a motivation to search for a dual string picture, for symmetric

orbifolds the duality with string theory came first [9]. Understanding systematically the

genus expansion on the orbifold side of the duality was one of the motivations of this work.

An important difference between the cases of U(N) gauge theory and of symmetric

product orbifold is that in the latter the genus expansion does not quite correspond to

the 1/N expansion. We have seen in section 2.3 that while 1/N can be taken to leading

order as the genus counting parameter, for given genus there is really an infinite sum over

subleading powers of 1/N . So it appears that the genus counting parameter on the dual

string side (the string coupling constant gs) should not be exactly identified with 1/
√

N :

the relation gs ∼ 1/
√

N is only valid to leading order for large N . Instead the natural

correspondence is between the genus expansion of the symmetric orbifold (as opposed to

its large N expansion) and the genus expansion of the dual string theory.
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Thus we are led to directly identify the covering surfaces contributing to an orbifold

correlator with the worldsheets of the dual string theory. If this is the correct dictionary,

there should be a relation between the “moduli space” Mcover
g,n of genus g covering maps con-

tributing to an n point-correlator and the familiar moduli space Mg,n of genus g Riemann

surfaces with n punctures, over which we are instructed to integrate to find the dual string

amplitudes. This is particularly tempting for the genus zero contribution to polynomial

correlators, where both moduli spaces are the Riemann sphere. We may formally write

G(u, ū) =

∫

Mcover
0,4

d2xF(x; u, ū) . (3.67)

For this expression to reproduce our algorithm, the integration over x should localize

to the solutions of u = v(x). The conjecture is that if one were to evaluate the same

amplitude on the dual string side, it would indeed localize to the solutions of u = v(x).

We may then literally identify the covering sphere t as the worldsheet of the dual string,

and the different diagrams with top cells of M0,4.

Localization phenomena of this kind are common in topological string theory, see

e.g. [33, 34]. Recently a form of localization has been used in [35] to compute four-point

correlators in minimal string theories (minimal models coupled to Liouville), which have

been argued to be closely related to the AdS3 × S3 background with NSNS flux [49]. The

symmetric orbifold SymNM4 lies at a very special point in the moduli space of string theory

on AdS3 × S3 × M4, and it is indeed expected that this point would be “topological”

in nature. In the related context of Gopakumar’s approach to string duals of free field

theories [50], a mechanism for the localization of worldsheet correlators to points in moduli

spaces was discussed in [51].
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A Deriving the polynomial map

In this appendix we derive the map for the polynomial case discussed in section 3.3.

From the local behavior of the map near ramification points (3.6)–(3.9) the derivative

of the map is given by

z′(y) = C (y + x)n1−1(y + x − 1)n2−1yn3−1 (A.1)

= C yn3−1
n1−1
∑

k=0

n2−1
∑

l=0

(

n1 − 1

k

)(

n2 − 1

l

)

xn1−1−k(x − 1)n2−1−l yk+l ,

where y = t − x. Integrating we get

z(y) = C

n1−1
∑

k=0

n2−1
∑

l=0

1

k + l + n3

(

n1 − 1

k

)(

n2 − 1

l

)

xn1−1−k(x − 1)n2−1−l yk+l+n3 + v(x).

(A.2)

We set C by demanding z(y = 1 − x) = 1,

C−1 =
1

1 − u(x)

n1−1
∑

k=0

n2−1
∑

l=0

(−1)k+l+n3

k + l + n3

(

n1 − 1

k

)(

n2 − 1

l

)

xn1−1−k(x − 1)n2+n3+k−1.

(A.3)

Further, the relation between x and u is obtained by demanding that z(y = −x) = 0,

v(x) =

∑n1−1
k=0

∑n2−1
l=0

(−1)k+l+n3

k+l+n3

(

n1 − 1

k

)(

n2 − 1

l

)

xn3+l(x − 1)−l

∑n1−1
k=0

∑n2−1
l=0

(−1)k+l+n3

k+l+n3

(

n1 − 1

k

)(

n2 − 1

l

)

[xn3+l(x − 1)−l − x−k(x − 1)n3+k]

(A.4)

Specializing to n3 = 2 we get a very simple expression for the derivative of v(x),

∂xv(x) = (−1)n2+1n1n2

(

n1 + n2

n1

)

(x − 1)n2xn1

((n1 + n2)x − n1)
2 . (A.5)

Note that v(x) is by itself a map to a sphere from a sphere with three ramification points,

at x = 0, 1, ∞, with ramifications n1 + 1, n1 + n2 − 1, n2 + 1 respectively. This map is

called the Belyi map in the mathematical literature.

B Four-point functions from Lunin-Mathur

A general algorithm to obtain correlators of twist fields in a bosonic symmetric orbifold

was discussed in [29] by Lunin and Mathur. These authors computed the correlators

directly in the path integral formulation of the theory by going to the covering surface

and carefully taking into account the appropriate Liouville factor. In this appendix we
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collect the results of [29] for planar contributions to the four-point functions in a bosonic

symmetric orbifold (2.1) and discuss in detail a simple example.

Given a four-point function with ramifications n1 at z = 0, n2 at z = 1, n3 at z = u,

n4 at z = ∞, we first compute the genus zero branched covering map, given as a ratio of

two polynomials of order d1 and d2: z(t) =
Pd1

(t)

Qd2
(t) (see section 3.1). We assume that z = 0

has pre-image t = 0, z = 1 pre-image t = 1, z = ∞ pre-image t = ∞, and z = u pre-image

t = x. Then we define

a0 = lim
t→0

z(t)

tn1
, a1 = lim

t→1

z(t) − 1

(t − 1)n2
, au = lim

t→x

z(t) − u

(t − x)n3
, (B.1)

a∞ = lim
t→∞

z(t)

tn4
.

We denote by t = qi, i = 1 . . . d2 the zeros of the denominator, which map to z = ∞.12 At

these points the map behaves as

z ∼ Ci

t − qi
. (B.2)

With these notations in place, the four-point function (on the covering sphere) is given by

ln G(x, x̄) = −n1 − 1

12
ln n1a

1/n1

0 − n2 − 1

12
ln n2a

1/n2

1 +
n4 − 1

12
ln n4a

1/n4
∞ (B.3)

−n3 − 1

12
ln n3a

1/n3
u − 1

6
ln

n1n2n3

n4
− 1

6

d2
∑

i=1

ln Ci.

To obtain the correlator we have to some over all the solutions xα(u) to the equation

v(x) = u, i.e. over all the diagrams. We also have to appropriately normalize the operators

as in section 2.3. The final result is

G(u, ū) =

∏4
k=1

√

nk(N − nk)!

N !
(

N − 1
2(n1 + n2 + n3 + n4) + 1

)

!

∑

α

G(xα(u), x̄α(u)) . (B.4)

Let us discuss in detail the example
〈

σ[n](0)σ[2](u)σ[2](1)σ[n+2](∞)
〉

, which is a poly-

nomial correlator. The map as obtained in appendix A is given by

v(x) = x1+n 2 + n − nx

(n + 2)x − n
, z(t;x) = tn

n(n + 1) t2 − n(n + 2)(1 + x) t + (n + 2)(n + 1)x

(n + 2)x − n
.

(B.5)

Computing the coefficients ai and plugging them into the general formula (B.3) we get

ln G(x, x̄) = − 1

12

[

ln |1−x|+−2+n+n2

2n
ln |x|−−2+n(2+n)

n(2+n)
ln |n−(2+n)x|

−1+n+n2

n
ln(n+2)+

1+n2

n
ln n+

n2+2n−2

n(n+2)
ln(n+1)+5 ln 2

]

. (B.6)

In the OPE limit u → 0 we have the following n + 2 solutions to the equation v(x) = u,

x ∼
(

− n

n + 2
u

)
1

n+1

, x ∼ 2 + n

n
+ O(u). (B.7)

12Of course for polynomial maps there are no additional images of z = ∞.
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Note that (B.6) is singular only for the first n + 1 solutions and thus only these contribute

to the singular terms in this OPE limit. The contribution of each of these n + 1 solutions

to the four-point function is

ln G(xα(u), x̄α(u)) ∼ − 1

24

[−2 + n + n2

n(n + 1)
ln |u| + (1 + 2n +

2

1 + n
) ln n (B.8)

−(3 + 2n +
2

1 + n
) ln(n + 2) + (2 − 2

n
+

2

2 + n
) ln(1 + n)

]

− 5

12
ln 2.

The expression for the un-normalized three-point functions in the (n + 1)2(n + 2) and

(n + 1)2n cases as obtained in [29] are

ln |Cn+1,2,n+2|2 = −8 + 7n + 2n2

24(2 + n)
ln(n + 1) +

5 + 5n + 2n2

24(n + 1)
ln(n + 2) − 5

24
ln 2.

ln |Cn,2,n+1|2 = −3 + n(3 + 2n)

24(1 + n)
ln n +

2 + n + 2n2

24n
ln(n + 1) − 5

24
ln 2. (B.9)

Combining the above results we see that

ln G(xα(u), x̄α(u)) ∼ −2

[

∆n+∆2−∆n+1

]

ln |u|+ln |Cn+1,2,n+2|2+ln |Cn,2,n+1|2, (B.10)

where

∆n =
1

24

(

n − 1

n

)

(B.11)

is the conformal dimension of an n-cycle. To complete the calculation we have to take

into account the normalization of the gauge invariant twist fields (see section 2.3). For the

four-point function the normalization is

Nn,2,2,n+2 =

√

4n(n + 2)(N − n)(N − n − 1))

N2(N − 1)2
(B.12)

For the three-point functions we get

Nn+1,2,n+2 =

√

2(n + 1)(n + 2)(N − n − 1)

N(N − 1)
, Nn,2,n+1 =

√

2n(n + 1)(N − n)

N(N − 1)
. (B.13)

Thus we learn

Nn+1,2,n+2Nn,2,n+1 = (n + 1)Nn,2,2,n+2. (B.14)

Combining the above results and summing over the roots (B.7) we conclude that in the

u → 0 OPE limit we get the expected answer

G(u, ū) = |u|−2[∆n+∆2−∆n+1]|Ĉn+1,2,n+2|2 |Ĉn,2,n+1|2 , (B.15)

where the hatted Cs represent properly normalized three-point functions.
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For the OPE limit to be consistent with the three-point functions it is important that

we count every map (or equivalence class, or diagram) exactly once. In general we should

expect agreement only at leading 1/N order but here we get an exact equality because the

correlator is polynomial and there are only planar contributions.

Let us just briefly mention the other OPE limits of (B.6). The single image of u → 0

with x ∼ 2+n
n corresponds to the n-cycle and the 2-cycle joining into a double-cycle (two-

particle state). In this case the OPE limit is not singular. There are three images of u → 1

corresponding to x → 1 and this corresponds to the two 2-cycles joining to a 3-cycle. The

single image of u → ∞ satisfying x → n
n+2 corresponds to the n + 2-cycle and 2-cycle

joining into a double-cycle consisting of a 2-cycle and an n-cycle. The n + 1 images of the

limit of u → ∞ satisfying x → ∞ correspond to the n + 2-cycle and the 2-cycle joining to

form an n + 1 cycle.

References

[1] A. Klemm and M.G. Schmidt, Orbifolds by cyclic permutations of tensor product conformal

field theories, Phys. Lett. B 245 (1990) 53 [SPIRES].

[2] C. Vafa and E. Witten, A strong coupling test of s duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074] [SPIRES].

[3] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

[4] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric

products and second quantized strings, Commun. Math. Phys. 185 (1997) 197

[hep-th/9608096] [SPIRES].

[5] L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [SPIRES].

[6] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory,

Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [SPIRES].

[7] R. Dijkgraaf, Fields, strings, matrices and symmetric products, hep-th/9912104 [SPIRES].

[8] H.C.D. Cove, Z. Kadar and R.J. Szabo, DLCQ strings, twist fields and one-loop correlators

on a permutation orbifold, Nucl. Phys. B 793 (2008) 260 [arXiv:0706.3382] [SPIRES].

[9] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[10] J. de Boer, Six-dimensional supergravity on S3 × AdS3 and 2d conformal field theory,

Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [SPIRES].

[11] R. Dijkgraaf, Instanton strings and hyperKähler geometry, Nucl. Phys. B 543 (1999) 545

[hep-th/9810210] [SPIRES].

[12] N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017

[hep-th/9903224] [SPIRES].

[13] F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1 − D5 system,

JHEP 06 (1999) 019 [hep-th/9905064] [SPIRES].

– 36 –

http://dx.doi.org/10.1016/0370-2693(90)90164-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B245,53
http://dx.doi.org/10.1016/0550-3213(94)90097-3
http://arxiv.org/abs/hep-th/9408074
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9408074
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601029
http://dx.doi.org/10.1007/s002200050087
http://arxiv.org/abs/hep-th/9608096
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9608096
http://arxiv.org/abs/hep-th/9701025
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9701025
http://dx.doi.org/10.1016/S0550-3213(97)00326-X
http://arxiv.org/abs/hep-th/9703030
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9703030
http://arxiv.org/abs/hep-th/9912104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9912104
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.014
http://arxiv.org/abs/0706.3382
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.3382
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1016/S0550-3213(99)00160-1
http://arxiv.org/abs/hep-th/9806104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9806104
http://dx.doi.org/10.1016/S0550-3213(98)00869-4
http://arxiv.org/abs/hep-th/9810210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9810210
http://dx.doi.org/10.1088/1126-6708/1999/04/017
http://arxiv.org/abs/hep-th/9903224
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9903224
http://dx.doi.org/10.1088/1126-6708/1999/06/019
http://arxiv.org/abs/hep-th/9905064
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905064


J
H
E
P
1
0
(
2
0
0
9
)
0
3
4

[14] O. Lunin and S.D. Mathur, Rotating deformations of AdS3 × S3, the orbifold CFT and

strings in the pp-wave limit, Nucl. Phys. B 642 (2002) 91 [hep-th/0206107] [SPIRES].

[15] J. Gomis, L. Motl and A. Strominger, pp-wave/CFT(2) duality, JHEP 11 (2002) 016

[hep-th/0206166] [SPIRES].

[16] E. Gava and K.S. Narain, Proving the pp-wave/CFT(2) duality, JHEP 12 (2002) 023

[hep-th/0208081] [SPIRES].

[17] M.R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS3/CFT2, JHEP 04 (2007) 050

[hep-th/0703001] [SPIRES].

[18] A. Dabholkar and A. Pakman, Exact chiral ring of AdS3/CFT2, Adv. Theor. Math. Phys. 13

(2009) 409 [hep-th/0703022] [SPIRES].

[19] A. Pakman and A. Sever, Exact N = 4 correlators of AdS3/CFT2,

Phys. Lett. B 652 (2007) 60 [arXiv:0704.3040] [SPIRES].

[20] M. Taylor, Matching of correlators in AdS3/CFT2, JHEP 06 (2008) 010 [arXiv:0709.1838]

[SPIRES].

[21] J.R. David and B. Sahoo, Giant magnons in the D1 − D5 system, JHEP 07 (2008) 033

[arXiv:0804.3267] [SPIRES].

[22] R. Dijkgraaf, Discrete torsion and symmetric products, hep-th/9912101 [SPIRES].

[23] P. Bantay, Permutation orbifolds, Nucl. Phys. B 633 (2002) 365 [hep-th/9910079]

[SPIRES].

[24] M.B. Halpern, The orbifolds of permutation-type as physical string systems at multiples of c

= 26. I: Extended actions and new twisted world-sheet gravities, JHEP 06 (2007) 068

[hep-th/0703044] [SPIRES].

[25] A. Recknagel, Permutation branes, JHEP 04 (2003) 041 [hep-th/0208119] [SPIRES].

[26] G.E. Arutyunov and S.A. Frolov, Virasoro amplitude from the SNR24 orbifold σ-model,

Theor. Math. Phys. 114 (1998) 43 [hep-th/9708129] [SPIRES].

[27] G.E. Arutyunov and S.A. Frolov, Four graviton scattering amplitude from SNR8

supersymmetric orbifold σ-model, Nucl. Phys. B 524 (1998) 159 [hep-th/9712061]

[SPIRES].

[28] A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on SN (X): Symmetries

and interactions, Nucl. Phys. B 577 (2000) 47 [hep-th/9907144] [SPIRES].

[29] O. Lunin and S.D. Mathur, Correlation functions for M(N)/S(N) orbifolds,

Commun. Math. Phys. 219 (2001) 399 [hep-th/0006196] [SPIRES].

[30] O. Lunin and S.D. Mathur, Three-point functions for M(N)/S(N) orbifolds with N = 4

supersymmetry, Commun. Math. Phys. 227 (2002) 385 [hep-th/0103169] [SPIRES].

[31] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461

[SPIRES].

[32] N. Berkovits, Simplifying and extending the AdS5 × S5 pure spinor formalism,

JHEP 09 (2009) 051 [arXiv:0812.5074] [SPIRES].

[33] J. Distler, 2−D quantum gravity, topological field theory and the multicritical matrix models,

Nucl. Phys. B 342 (1990) 523 [SPIRES].

– 37 –

http://dx.doi.org/10.1016/S0550-3213(02)00677-6
http://arxiv.org/abs/hep-th/0206107
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206107
http://dx.doi.org/10.1088/1126-6708/2002/11/016
http://arxiv.org/abs/hep-th/0206166
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206166
http://dx.doi.org/10.1088/1126-6708/2002/12/023
http://arxiv.org/abs/hep-th/0208081
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0208081
http://dx.doi.org/10.1088/1126-6708/2007/04/050
http://arxiv.org/abs/hep-th/0703001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703001
http://arxiv.org/abs/hep-th/0703022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703022
http://dx.doi.org/10.1016/j.physletb.2007.06.041
http://arxiv.org/abs/0704.3040
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.3040
http://dx.doi.org/10.1088/1126-6708/2008/06/010
http://arxiv.org/abs/0709.1838
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.1838
http://dx.doi.org/10.1088/1126-6708/2008/07/033
http://arxiv.org/abs/0804.3267
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3267
http://arxiv.org/abs/hep-th/9912101
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9912101
http://dx.doi.org/10.1016/S0550-3213(02)00198-0
http://arxiv.org/abs/hep-th/9910079
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9910079
http://dx.doi.org/10.1088/1126-6708/2007/06/068
http://arxiv.org/abs/hep-th/0703044
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703044
http://dx.doi.org/10.1088/1126-6708/2003/04/041
http://arxiv.org/abs/hep-th/0208119
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0208119
http://dx.doi.org/10.1007/BF02557107
http://arxiv.org/abs/hep-th/9708129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9708129
http://dx.doi.org/10.1016/S0550-3213(98)00326-5
http://arxiv.org/abs/hep-th/9712061
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9712061
http://dx.doi.org/10.1016/S0550-3213(00)00147-4
http://arxiv.org/abs/hep-th/9907144
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907144
http://dx.doi.org/10.1007/s002200100431
http://arxiv.org/abs/hep-th/0006196
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0006196
http://dx.doi.org/10.1007/s002200200638
http://arxiv.org/abs/hep-th/0103169
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0103169
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B72,461
http://dx.doi.org/10.1088/1126-6708/2009/09/051
http://arxiv.org/abs/0812.5074
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.5074
http://dx.doi.org/10.1016/0550-3213(90)90325-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B342,523


J
H
E
P
1
0
(
2
0
0
9
)
0
3
4

[34] E.P. Verlinde and H.L. Verlinde, A solution of two-dimensional topological quantum gravity,

Nucl. Phys. B 348 (1991) 457 [SPIRES].

[35] A.A. Belavin and A.B. Zamolodchikov, Integrals over moduli spaces, ground ring and

four-point function in minimal Liouville gravity, Theor. Math. Phys. 147 (2006) 729

[SPIRES].

[36] S.K. Lando and A.K. Zvonkin, Graphs on surfaces and their applications, Springer, (2004),

pg. 403.

[37] S.K. Lando, Ramified coverings of the two-dimensional sphere and the intersection theory in

spaces of meromorphic functions on algebraic curves, Russ. Math. Surv. 57 (2002) 463.

[38] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz numbers and matrix

models. I, math.AG/0101147.

[39] A. Mironov, A. Morozov and S. Natanzon, Complete Set of Cut-and-Join Operators in

Hurwitz-Kontsevich Theory, arXiv:0904.4227 [SPIRES].

[40] D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161

[hep-th/9212149] [SPIRES].

[41] D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory,

Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [SPIRES].

[42] D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional

QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [SPIRES].

[43] S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2−D Yang-Mills theory, equivariant

cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184

[hep-th/9411210] [SPIRES].

[44] A. Pakman, L. Rastelli and S.S. Razamat, Extremal correlators and Hurwitz numbers in

symmetric product orbifolds, arXiv:0905.3451 [SPIRES].

[45] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of

orbifolds, Nucl. Phys. B 282 (1987) 13 [SPIRES].

[46] A. Ronveaux, Heun’s Differential Equations, Oxford Science Publications, U.S.A. (1995),

pg. 354.

[47] G. Bonelli, L. Bonora and F. Nesti, String interactions from matrix string theory,

Nucl. Phys. B 538 (1999) 100 [hep-th/9807232] [SPIRES].

[48] G. Bonelli, L. Bonora, F. Nesti and A. Tomasiello, Matrix string theory and its moduli space,

Nucl. Phys. B 554 (1999) 103 [hep-th/9901093] [SPIRES].

[49] L. Rastelli and M. Wijnholt, Minimal AdS3, hep-th/0507037 [SPIRES].

[50] R. Gopakumar, From free fields to AdS. III, Phys. Rev. D 72 (2005) 066008

[hep-th/0504229] [SPIRES].

[51] S.S. Razamat, On a worldsheet dual of the Gaussian matrix model, JHEP 07 (2008) 026

[arXiv:0803.2681] [SPIRES].

– 38 –

http://dx.doi.org/10.1016/0550-3213(91)90200-H
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B348,457
http://dx.doi.org/10.1007/s11232-006-0075-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA,147,729
http://dx.doi.org/10.1070/RM2002v057n03ABEH000511
http://arxiv.org/abs/math.AG/0101147
http://arxiv.org/abs/0904.4227
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4227
http://dx.doi.org/10.1016/0550-3213(93)90402-B
http://arxiv.org/abs/hep-th/9212149
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9212149
http://dx.doi.org/10.1016/0550-3213(93)90403-C
http://arxiv.org/abs/hep-th/9301068
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9301068
http://dx.doi.org/10.1016/0550-3213(93)90042-N
http://arxiv.org/abs/hep-th/9303046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9303046
http://dx.doi.org/10.1016/0920-5632(95)00434-B
http://arxiv.org/abs/hep-th/9411210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9411210
http://arxiv.org/abs/0905.3451
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.3451
http://dx.doi.org/10.1016/0550-3213(87)90676-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B282,13
http://dx.doi.org/10.1016/S0550-3213(98)00729-9
http://arxiv.org/abs/hep-th/9807232
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9807232
http://dx.doi.org/10.1016/S0550-3213(99)00271-0
http://arxiv.org/abs/hep-th/9901093
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9901093
http://arxiv.org/abs/hep-th/0507037
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507037
http://dx.doi.org/10.1103/PhysRevD.72.066008
http://arxiv.org/abs/hep-th/0504229
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0504229
http://dx.doi.org/10.1088/1126-6708/2008/07/026
http://arxiv.org/abs/0803.2681
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.2681

	Introduction
	Diagrams
	``Feynman'' rules
	Correspondence between diagrams and branched coverings
	N dependence.
	Computing the correlators

	Planar covering surfaces for four-point correlators
	Heun's equation
	Polynomial solutions of Heun's equation
	Polynomial case
	Monodromies and channel-crossing
	Covering surfaces = dual worldsheets: a localization conjecture

	Deriving the polynomial map
	Four-point functions from Lunin-Mathur

